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Let k be a field of characteristic p. For a topological group G and a ,k[q,G]- 
module A we consider the equivariant Bore1 cohomology theory with local 
coefficients in A. We denote its value on a G-space X by Hz(X, A). This is a 
module over the even-dimensional part of the k-cohomology ring of the classifying 
space BG. This ring we denote by HG for short. We shall investigate the support 
V,(X, A) of a module Hg(X; A) in the spectrum of the ring &. 

The support V,(X, A) has a nice description in the case when A is not only a 
k[q,G]-module but also a k[zOG]-algebra. Then, for an arbitrary subgroup K of 
G having fixed points on X, the restriction homomorphism Ho--+& induces a 
map V,(A) = V,(pt; A)-+ V&X; A). Denoting by EA(G, X) the category whose 
objects are elementary abelian p-subgroups of G having fixed points on X and 
whose morphisms are restrictions of inner automrophisms of G, we obtain a natural 

map 

lim ind,,, xl VE(A) ---% l+,(X, A). 

The main theorem of the paper says that a is a homeomorphism of spaces with 
Zariski topology; when G is a compact Lie group or a discrete group of finite p- 

cohomological virtual dimension with only finitely many conjugacy classes of 
elementary abelian p-subgroups, X is either finite-dimensional or compact, ana the 
action satisfies certain local and finiteness conditions. 

For finite groups and one-point space our resuit reduces to the stratification 
theorem of Avrunin and Scott [2, Theorem 3 31. Their proof is based on the Serre 
theorem on cohomology of p-groups (Serre [lo]). Our proof uses topological 
arguments in the spirit of Quillen’s work on the spectrum of an equivariant 
cohomology ring with constant coefficieuts (Quillen [9]). The equivariant 
cohomology with local coefficients was used by the author to prove a periodicity 
theorem for group cohomology with coefficients in a module over a group ring 
(Jackowski [S]). From it the simplest version of the main result was derived [S, 
Theorem 3. I]. An algebraic proof of it, also using Serre’s theorem, was given by 
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Chouinard [a]. We conclude the paper giving a topological proof of the Serre 
theorem. 

1. Annihilators of equivariant cohomolegy with local coefficients 

Let G be a topological group acting on the space X. All topological spaces are 
assumed to be paracompact and Hausdorff. For any k[nOG]-module A we denote 

H;(X, A) := H*(EG x,x; p*A) 

where p*A is a local coefficient system on the total space induced by the projection 
map p : EC xo X+BG. The cohomology with local coefficients is here the 
cohomology of a space with coefficients in the sheaf defined by the local coefficient 
system (cf. Spanier [ 11, Ex. 6.F)). All facts about the sheaf cohomology which are 
:tsed in this paper are collected in [9, Appendix A]. 

The pairing k@A-*A defines on Hz(X, A) the structure of an Ho-module. We 
shall investigate the annihilator of an Ho-module Hz(X; A) which will be denoted 
by AnnG(X; A). To obtain a decomposition theorem we have to impose on a 
G-space X some additional conditions: 

(C) The stalks of the Leray sheaf on the orbit space X/G associated to the 
presheaf U+H&-‘U; A), where q : X+X/G is the projection map, are naturally 
isomorphic to the equivariant cohomology of the orbits Hz(q-‘{ y}; A). 

(F) The orbit space X/G has finite cohomological dimension over k. 

1.1, Theorem. For any G-space X satisfying the conditions (C) and (F) and for any 
k[zOG J-module A, 

n AnnG(Gx; A)c rad(AnnG(X, A))p 
xex 

where Gx is the orbit of the point XE X. 

Proof. We apply the Leray spectral sequence {EFq(A)} of the map EG xo X+ 
X/G. The second term of the spectral sequence is given by 

E,p4(A) = &ip(X/G; 3y;;4) 

where 2: denotes a sheaf defined in (C). The infinite term is a graded group 
associated with a filtration {Fi} of H:(X, A): 

The Learay spectral sequence {E,**(A)} is a sequence of HG-modules. The module 
structure is defined by the pairing k@A-+A and the resulting pairing of the Leray 
spectral sequences E~q(k)oE,“f(A)4E~‘“4” (A). The finiteness assumption (F) 
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implies that Hp(X/G; ZG) = 0 for p> cdk(X/G). Therefore the filtration {F,) is 

finite. 
Assume u E Ann&Gx; A) for all x E X and is homogeneous. Then multiplication 

by u annihilates stalks of the Leray sheaf. Consequently it annihilates all &-terms 
for r 12. Vanishing of uU : Eg*(A)+EE*(A) implies that multiplication by u on 
H$(X, A) maps Fp into F”+ 1. If d > cdk(X/G), we obtain ud E AnnG(X, 14). Hence 
u E rari(Anno(X, A)). Cl 

We shall examine the kernel of the edge homomorphism of the Leray spectral 
sequence :j!$! ‘(A)} 

H; (X, A) ---% fi’(X/G; R;). 

The edge homomorphism is induced by the inclusions of orbits GXC X for all x E X. 
If X has locally finite orbit structure, then the edge homomorphism has values in 
the product n.ueX H$(Gx; A) (cf. [U, 5.111). Hence its kernel is the intersection of 
kernels of restriction homomorphisms to orbits occurring on X. 

1.2. Theorem. For a given G-space X satisfying condition (F) and (I k[noG]- 
module A there is an integer n such that for any u E ker @ its n-th powler uR E 

A) vanishes. Cl 
tl tmes 

The proof is similar to the one of Theorem 2.1 and it uses the pairing 

E,?*(A)@E,**(A)-+E,**(A@A). 

Assume now that A is a k[noG]-algebra with unit. Then we have an em- 
bedding j : k *A given by j(r) = r l llA . The map j induces a homomorphism 
j(X) : HG * Hz(X; A). The following lemma is obvious: 

1.3. Lemma. AnnG(X, A) = ker j(X). El 

The last lemma implies that for any subgroup KC G and any G-subspace YcX 
the restriction homomorphism HG *HK maps Ann&X, A) into AnnK(Y, A). It 
gives the following corollary of Theorem 1.1. 

1.4. Corollary. Let A be a k[zOG]-algebra. If a G-space X satisfies conditions (C) 
and (F) and if only finitely many orbit types occur on X, then 

n rad(Anno(Gx; A)) = rad(Ann&X;, A)). E! 
XEX 

If A is a k[noG]-algebra, then H$(X, A) is a non-commutative ring. Hence, if 
u E ker d, then by 1.2 it is nilpotent. 

. The Mayer-Vietoris argument gives proofs of Theorems 1.1 and 1.2 for 
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compact Lie groups acting on compact, not necessarily finite-dimensional, spaces 
(cf. [9, proof of 3.21). Thus all following corollaries remain true respectively. 

2. The decomposition theorem for G-spaces with elementary abelian isotropy 
subgroups 

From now on we assume that A4 is a k[zoG]-algebra. Let K be a subgroup of G. 
The map induced by the restriction homomorphism HG + HK on corresponding 
spectra we denote by $: V,(k)+ v,(k). We need the following lemma mentioned 
in the introduction. 

2.1. Lemma. If a subgroup K has a fixed point on a G-space X, then tg maps 
VK(M) into V,(X, M). 

Proof. For any equivariant map f : G/K-,X we have the commutative diagram 

HG - H;(X, M) 

HK - H;(pt; M) = H;(G/K; M) 

Now the lemma follows from Lemma 1.3. Cl 

Let K and K’ be subgroups of G and let q3s : K+K’ be a restriction of a-1 inner 
automorphism of G defined by an element g E G. Then cpg induces a map of sup- 
port5 qg, : i+(M)+ i+(M); and the following diagram is commutative: 

VK (M) 

cp, l 

I 

1 V (X M) 
A G ; 

The induced map cps* will be also denoted by tit. 

For a given set F of subgroups of a group G we denote by F(G, X) the category 
of subgroups belonging to F and having fixed points on X. The morphisms in the 
category F(G, X) are restrictions of inner automorphisms of the group G. 

?_,emma 2.1 and the above remarks enable us to define a map 

lim ind,, x) V,(M) --% &(X, M). 

The most important set of subgroups is for us the set of all elementary abelian p- 
subgroups denoted by EA. We proceed towards the proof of the following: 
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heorem. The map lim indEAtc; x) V&M) --% V&X; M) is a homeomorphism 
of spaces with Zariski topology when either one of the following conditions hold: 

(a) G is a compact Lie group acting on a space X which is either compact or 
cd,(X) < QO and only finitely many G-orbit types occur on X. 

(b) G is a discrete group which has on[y finitely many conjugacy classes of elemen- 
tary abelian p-subgroups and it contains a normal subgroup G’ of finite index such 
that cd,(G’)< =J. Moreover G acts on X satisfying conditions (C) and (F) of 
Section 2; for every point x E X the canonical map G/G, -+X is an embedding onto 
a subset Gx and only finitely many G-orbit types occur on X. 

Remarks. In the case (a) condition (C) is always fulfilled and orbits are embedded. 
If cd,(X)< 00, then (F) also holds (cf. [9, A. 11 I). 

If the subgroup G’ mentioned in (b) has finite-dimensional k-cohomology, then 
G must have finitely many conjugacy clases of elementary abelian p-subgroups (cf. 
[9, 14.51). 

First we prove Theorem 2.2 for G-spaces on which all isotropy subgroups are 
elementary abeiian. The following lemma was inspired by Lemma 1.3 of Avrunin 
and Scott [2]. 

2.3. Lemma. For any subgroup E’ of an elementary abelian p-group E and any’k[E]- 
mtidule A, (t$)- ’ V&A) C V&(A). 

Proof. We have to prove that if p$ VEj(A), then t:?(p) $ VE(A): i.e. H*(E’; A),= 0 
implies H*(E; A& = 0 where @ = t:!(p). The subscript denotes the localization of the 
group cohomology with coefficients in A with respect to the prime ideal. The esten- 
sion E’*E *E./E = Q leads to the Hochschild-Serre spectral sequence 

E!“(A) = HP(Q; Hq(E’; A)) =j HP + q(E; A). 

There is a natural pairing of the latter spectral sequence with the degenerate spectral 
sequence with constant coefficients: E,**(k)@E:*(A)-+E,**(A). This pairing con- 
verts the spectral sequence {E,**(A)} into a sequence of HE-modules. The projec- 
tion E -+E’ gives a split embedding of the ring E?(k) = HE’ into HE. Hence it is 
enough to prove that H*(E, A),, =O. The HEt-module structure on EZ-term is de- 
fined by the natural multiplication 

H’(E’; k)@HP(Q; Hq(E’; A))-,Hp(Q; H’+q!E’; A)). 

Localization is an exact functor. Therefore, upon localizing the spectral sequence 
(E,**(A)} with respect to the prime ideal, we obtain a spectral sequence {E:*(&,} =$ 
H*(E; A&. It is also clear that HP(Q; H(E’; A)),, = HP(Q; H*(E’; A),)) = 0. There- 
fore H*(E; A)*= 0. Cl 
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Remark. One can also prove that the edge homomorphism H*(E; A)-@*= 
H*(E’; A)Q is an epimorphism (cf. Betley [3]). 

2.4. Corollary. If M is u k[E]-algebra, then (&)-’ V,(M) = I/E’, M). Cl 

Using Corollaries 2.4 and 3.5 we obtain a new proof of the Avrunin-Scott lemma 
mentioned above. 

2.5. Lemma. 
subgroups. 

Theorem 2.2 is true for G-spaces with elementary abelian isotropy 

Proof. Corollary 1.4 implies the following decomposition of the support 
Vc(X; M): 

V,(X, M) = Lt V,(Gx; M). 
A-E x 

Assumptions (a) and (b) imply that Hz(Gx; M) = Hzx(pt; M) = H*(BG,; M). 
The &-module structure on Hz(Gx; M) is defined by the composition HG + 
HG, A H*(BG,; M); hence HoJAnnG(Gx; M) c HGx/Ann,(M). 

Observe that in our case Hc, is a finite Ho-module. For compact Lie groups 
this is Corollary 2.4 in [9]. 

In case G satisfies assumption (b), as cd,(G’) < 00, G’ has no p-torsion elements, 
hence the composition G,C G -+G/G’ is injective. Thus the proof is reduced to the 
finite group case. 

The Cohen-Seidenberg theorem implies now surjectivity of the map 
VG&M)-+ V,(cX; M). Hence a! is also surjective. 

To prove injectivity of a it is enough to show that if pk V&W), P”E V&(M) and 
&p’)= ~$(p”), then there is a subgroup E and an ideal pi V,(M) such that 
t:‘(p) = p’ and tF(p) = p”. The existence of E and p E V&) satisfying those con- 
ditions follows from Quillen’s theorems [9]. Corollary 2.4 ensures us that in fact 

P E YdWc V.dQ. 
As G has only finitely many conjugacy classes of elementary abefian p-subgroups 

19, 6.31, it is easy to see that a is a closed map. Hence it is a homeomorphism. Cl 

3. The decomposition theorem for arbitrary G-spaces 

Let G be a compact Lie group. Choose an embedding of G into a unitary group 
U= L;(n) and let S be the subgroup of elements of order dividing p in a maximal 
torus of U. Denote F= U/S the p-flag manifold. For any G-space X the projection 
XX F+X defines the fibration EG XG (X xF)-*EX xG X with fiber F. The fiber 
in the latter fibration is totally non-homologous to zero [9, 6.51. To compute the 
equivariant cohomology of XX F with coefficients in M we need the Leray-Hirsch 
theorem with local coefficients. 
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Let p : E -+B be a locally trivial bundle whose fiber is totally non-homoiogous to 
zero over a field k. Let r be any local system of k-modules on B. Let fl r H*(F, kj-+ 
H*(E; k) denote a cohomological extension of the fiber. 

3.1. Theorem. The map @ : H*(B; T)@H*(F; k)-+H*(E; p*T) given by @(b@f) = 
0(f) Up*(b) is an isomorphism of H*(B; k)-modules; and the ind(uced homomor- 
phism p * : H*(B; r) + H*(E, p *r) is a monomorphism. 

Proof. The theorem follows from the Serre spectral sequence for the map p with 
local coefficients. q 

3.2. Corollary. There is an isomorphism of Ho-modules 

and the projection X x F-+X induces a monomorphism of equivariant co- 
homology. 0 

Proof of Theorem 2.2. Assume first that Condition (a) is fulfilled, i.e. G is a com- 
pact Lie group. Subgroups of G which have fixed points on the p-flag manifold F 
are precisely elementary abelian p-subgroups of G. Hlence all isotropy subgroups on 
XX F are elementary abelian and ,F,A(G, X) = EA(G, X x F). Corollary 3.2 gives us 
the equality of supports Vo(X, M) = V&X xF; M). The assertion follows now 
from the commutative diagram of homeomorphisms: 

lim ind,,, x) I/E(M) Q Vo(x; M) 

I 
2: 

I 
2: 

lim ink4(G,XxF) b(M) (r vG(xxF; M) 

Now assume that Condition (b) is fulfilled. Let G’ be a normal subgroup of finite 
index in G whose p-cohomological dimension is finite. The Serre construction [9, 
15.91 gives us a G-space Y with finite isotropy subgroups on which G’ acts freely. 
The G-space Y fulfills Condition (b). Embedding the finite quotient group G/G’ in 
the unitary group we obtain a G-action on the flag manifold F. The diagonal G- 
action on Y x F also fulfi.lls Condition (b). The subgroups of G which have fixed 
points on Y x F are again precisely elementary abelian subgroups of G and for any 
G-space X, EA(G, X x Y xF) =EA(G, X). As Y is contractible, we have an 
isomorphism 

H;(Xx YxF; M)=H$(XxF; M) 

and consequently Vo(X x Y xF; M) = Vo(X, M). To complete the proof we pro- 
ceed as in the case of compact Lie group. Cl 

Let G be a group satisfying assumptions (a) or (b) of Theorem I.2. 
Then the map 
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lim indEAtoj V&M)-‘Vo(M) 

is a homeomorphism. q 

3.4. Corollary. For any G-space X satsvying assumptions (a) or (b) of Theorem 2.2 

rad AnnG(X; M) = n Rad Ann,(G/E, M). 
E4G.X) 

Proof. The corollary follows from Corollaries 1.4 and 3.2. We proceed exactly as 
in the proof of Theorem 2.2. Cl 

The last corollaries imply results of Avrunin and Scott [2] and Avrunin [l]. To 
see that, we introduce for any finite group G acting on a space X and any k[G]- 
module A a new HG -module M,(X, A) = @ HE(x L @A), where L ranges over 
the isomorphism classes of indecomposable k[G]-modules. The following proposi- 
tion in the case X = pt is mentioned in [l] and [5]. 

For a given k[G]-module A, we denote by Endk(A) the k[G]-algebra of k-endo- 
morphisms of A with diagonal G-action. 

3.5. Proposition. Ann(M,(X, A)) = AnnG(X, Endk(A)). 

Proof. The G-isomorphism Endk(A) = A*@A gives an inclusion Ann(M&X, A)) c 

Ann&X, Endk(A)). To prove the converse inclusion we consider the G-pairing 
L @A 8 EndkiA) +L @A defined by evaluation. This pairing converts Hz (X; L @A) 
into a unitary Hz(X, Endk(A))-module. If u EA~II&X, End,(A)), then for any 
ZEH;(X,L@A), u~z=u+lz)=(u~ O)z=O. Cl 

3.6. Corollary. supp(M&X; A)) = Vc(X, End&I)). Cl 

Now the main theorem of Avrunin [l] follows from Corolary 3.4 applied to the 
one-point space and finite groups, together with Proposition 3.5. Theorem 3.3 of 
Avrunin and Scott [2] follows from Corollary 3.3 applied to finite groups and 
Corollary 3.6. 

Following Quillen [9], Avrunin and Scott [2] stated their stratification theorem 
in various forms (cf. [2, 3.1-3.41). The proofs of Quillen and Avrunin-Scott carry 
over verbatim to give analogous versions of our Theorem 2.2. 

We finish this section by considering elements of equivariant cohomology restrict- 
ing trivially to all elementary abelian subgroups of isotropy groups. 

heorem. Let X be a G-space satisfying assumption (a) or (b) of Theorem 2.2. 
For any k[qG]-module A there exists an integer n such that for any 

UEEEJ2G X) 
ker{Hz(X; A)+Hz(pt; A)} 

I 
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roof. Follows from Theorem 1.2, and the embedding of the equivariant co- 
homology of X into the equivariant cohomology of a space with elementary abelian 
isotropy groups provided by Corollary 3.2. U 

3.8. Corollary. If A4 is a k[xOG]-algebra, then any eIement of Hz(X; M) which 
restricts trivially to aii elementary abelian subgroups is nilpotent. q 

For X= pt, G finite and M= End,(A), the last corollary was proved by Carlson 

141. 

4. The Serre Theorem 

The purely algebraic approach to the problems discussed in this pager is based 
on the following theorem of J.-P. Serre [IO]. We give here a topological proof of it. 

4.1. Theorem. Let G be a finite p-group which is not elementary abeiian. Let 
k=E/pE. Thee is a sequence of non-zero 
by, U l l l U pyj = 0; where P is the Bockstein 
exact sequence 

eiements yl, . . . , yj E H’(G; k) SU& t hiat 
homomorphism associated to the short 

Proof. Let G1, . . . , G, be the complete set of maximal proper subgroups of G. Let 
yi E Hom(G, k) = H’(G; k) be an element associated with subgroup G,. The 
cohomology class z =/?y] U 0-0 UPY, restricts trivially to every proper subgroup of 
G; hence to every elementary abelian p-subgroup. Thus by the Quillen nilpotency 
theorem (Corollary 3.8 in the case M= k) the class z is nilpotent. Z 

The Serre theorem also follows easily from the localization theorem foa- equi- 
variant cohomology (cf. [7, $3.21). 

It is not difficult to check that the Bockstein of an element y E H*(G; k) is the 
mod p reduction of the Euler class of the one-dimensional complex representation 
G --& kc C*. One can also prove that if G is not an elementary abelian group, 
then there are non-zero two-dimensional integral cohomology classes whose product 
vanishes. 
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